On the Design of Molecular Excitonic Circuits for Quantum Computing: The Universal Quantum Gates

24 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This manuscript presents a theoretical strategy for encoding elementary quantum computing operations into the design of molecular excitonic circuits. Specifically, we show how the action of a unitary transformation of coupled two-level systems can be equivalently represented by the evolution of an exciton in a coupled network of dye molecules. We apply this strategy to identify the geometric parameters for circuits that perform universal quantum logic gate operations. We quantify the design space for these circuits and how their performance is affected by environmental noise.

Keywords

Exciton dynamics
qubit
excitonic circuits

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.