Chemically Induced Splay Nematic Phase with Micron Scale Periodicity

23 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nematic liquid crystals lack positional order of their constituent molecules, which share an average orientational order only. Modulated nematic liquid crystal phases also lack positional order, but possess a periodic variation in this direction of average orientation. In the recently discovered splay nematic (NS) phase the average orientational order is augmented with a periodic splay deformation of orientation perpendicular to the director. In this communication we report the first example of a splay nematic phase which is chemically induced by mixing two materials, neither of which exhibit the NS­ phase. The splay-nematic phase is identified based on its optical textures, X-ray scattering patterns, and small enthalpy of the associated phase transition. We measure the splay periodicity optically, finding it to be ~ 9 μm. This unexpected generation of the splay-nematic phase through binary mixtures offers a new route to materials which exhibit this phase which complements ongoing studies into structure-property relationships and could accelerate the development of technologies utilising this remarkable polar nematic variant.

Keywords

liquid crystals
nematic
splay nematic
SAXS
bent-core nematic
optical microscopy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.