Sampling Conformational Changes of Bound Ligands Using Nonequilibrium Candidate Monte Carlo

23 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Flexible ligands often have multiple binding modes or bound conformations that differ by rotation of a portion of the molecule around internal rotatable bonds. Knowledge of these binding modes is important for understanding the interactions stabilizing the ligand in the binding pocket, and also for calculating accurate binding affinities. In this work, we use a hybrid molecular dynamics (MD)/non-equilibrium candidate Monte Carlo (NCMC) method to sample the different binding modes of several flexible ligands and also to estimate the population distribution of the modes. The NCMC move proposal is divided into three parts. The flexible part of the ligand is alchemically turned off by decreasing the electrostatics and steric interactions gradually, followed by rotating the rotatable bond by a random angle and then slowly turning the ligand back on to its fully interacting state. The alchemical steps prior to and after the move proposal help the surrounding protein and water atoms in the binding pocket relax around the proposed ligand conformation and increase move acceptance rates. The protein-ligand system is propagated using classical MD in between the NCMC proposals. Using this MD/NCMC method, we were able to correctly reproduce the different binding modes of inhibitors binding to two kinase targets -- c-Jun N-terminal kinase-1 and cyclin-dependent kinase 2 -- at a much lower computational cost compared to conventional MD and umbrella sampling. This method is available as a part of the BLUES software package.

Keywords

molecular dynamics
Monte Carlo
NCMC
ligand binding
free energy calculations
enhanced sampling

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.