Linear Correlation Models for the Redox Potential of Organic Molecules in Aqueous Solutions

21 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


In this study we use the molecular orbital energy approximation (MOEA) and the energy difference approximation (EDA) to build linear correlation models for the redox potentials of 53 organic compounds in aqueous solutions. The molecules evaluated include nitroxides, phenols and amines. Both the MOEA and EDA methods yield similar correlation models, however the MOEA method is less computationally expensive. Correlation coefficients (R2) below 0.3 and mean absolute errors above 0.25 V were found for correlation models built without solvent effects. When explicit water molecules and a continuum solvent model are added to the calculations, correlation coefficients close to 0.8 are reached and mean absolute errors below 0.18 V are obtained. The incorporation of solvent effects is necessary for good correlation models, particularly for redox processes of charged molecules in aqueous solutions. A comparison of the correlation models from different methodologies is provided.


Redox potentials
aqueous solutions
linear correlations
explicit solvation


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.