A Solvent Free Synthetic Route for Cerium(IV) Metal-Organic Frame-works with UiO-66 Architecture and Their Photocatalytic Application

07 October 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A novel solvent-free synthesis for Ce-UiO-66 metal-organic frameworks (MOFs) is presented. The MOFs are obtained by simply grinding the reagents, cerium ammonium nitrate (CAN) and the carboxylic linkers, in a mortar for few minutes with the addition of a small amount of acetic acid (AcOH) as modulator (1.75 eq, o.1 ml). The slurry is then transferred into a 1 ml vial and heated at 120°C for 1 day. The MOFs have been characterized for their composition, crystallinity and porosity and employed as heterogenous catalysts for the photo-oxidation reaction of substituted benzylic alcohols to benzaldaldehydes under near ultraviolet light irradiation. The catalytic performances, such as yield, conversion and kinetics, exceed those of similar systems studied by chemical oxidation and using Ce-MOF as catalyst. Moreover, the MOFs were found to be reusable up to three cycles without loss of activity. Density functional theory (DFT) calculations gave an estimation of the band-gap shift due to the different nature of the linkers used and provide useful information on the catalytic activity experimentally observed.

Keywords

Metal-Organic Frameworks
DFT Calculations
Green Syntheses

Supplementary materials

Title
Description
Actions
Title
revised ESI Campanelli ChemRXiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.