GRAM: A True Null Model for Relative Binding Affinity Predictions

21 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Relative binding affinity prediction is a critical component in computer aided drug design. Significant amount of effort has been dedicated to developing rapid and reliable in silico methods. However, robust assessment of their performance is still a complicated issue, as it requires a performance measure applicable in the prospective setting and more importantly a true null model that defines the expected performance of random in an objective manner. Although many performance metrics, such as correlation coefficient (r2), mean unsigned error (MUE), and room mean square error (RMSE), are frequently used in the literature, a true and non-trivial null model has yet been identified. To address this problem, here we introduce an interval estimate as an additional measure, namely prediction interval (PI), which can be estimated from the error distribution of the predictions. The benefits of using the interval estimate are 1) it provides the uncertainty range in the predicted activities, which is important in prospective applications; 2) a true null model with well-defined PI can be established. We provide one such example termed Gaussian Random Affinity Model (GRAM), which is based on the empirical observation that the affinity change in a typical lead optimization effort has the tendency to distribute normally N (0, s). Having an analytically defined PI that only depends on the variation in the activities, GRAM should in principle allow us to compare the performance of relative binding affinity prediction methods in a standard way, ultimately critical to measuring the progress made in algorithm development.

Keywords

performance metrics
null models
Prediction interval
relative affinity predictions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.