Encapsulation of a Ruthenium(II) Complex in Polylactide Nanoparticles: A Route to Remarkable Cellular Uptake for Photodynamic Therapy of Cancer

21 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ruthenium complexes, and especially ruthenium(II) polypyridyl complexes, have attracted a lot of attention as potential photosensitizers for photodynamic therapy. However, some are unsuitable due to their low cellular uptake, potentially due to their relatively low degree of lipophilicity, which prevents them from penetrating tumor cells. Here, we report the conjugation of a non-cell-penetrating ruthenium polypyridyl complex, [Ru(bipy)2-dppz-7-hydroxymethyl][PF6]2 (bipy = 2,2’-bipyridine, dppz = dipyrido[3,2-a:2;2’,3’-c]phenazine) (RuOH), to a highly hydrophobic biodegradable and biocompatible polylactide to enhance its cellular uptake. The ruthenium-polylactide conjugates were prepared by drug-initiated ring-opening polymerization of lactide through the formation of a zinc alkoxide initiator and formulated into nanoparticles by nanoprecipitation. They were characterized by means of nuclear magnetic resonance spectroscopy (NMR), matrix-assisted laser desorption/ionization – time of flight mass spectrometry (MALDI-TOF MS) and dynamic light scattering (DLS). Finally, their photo-therapeutic activity (λexc = 480 nm, 3.21 J cm-2) in cancerous human cervical carcinoma (HeLa) and non-cancerous retinal pigment epithelium (RPE-1) cells was tested alongside that of RuOH and their cellular uptake in HeLa cells was assessed by confocal microscopy and inductively coupled plasma - mass spectrometry (ICP-MS). All nanoparticles showed improved photophysical properties including luminescence and singlet oxygen generation, enhanced cellular uptake and, capitalizing on this, an improved photo-toxicity.

Keywords

Photodynamic therapy
Ruthenium complexes
Polylactide
Nanoparticles
Stereocomplexation
Drug Delivery

Supplementary materials

Title
Description
Actions
Title
SupportingInformation
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.