High Resolution Photoelectron Spectroscopy of Cryogenically-Cooled NO3ˉ

21 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

High-resolution anion photoelectron spectra of cryogenically cooled NO3ˉ anions obtained using slow photoelectron velocity-map imaging are presented and provide new insight into the vibronic structure of the corresponding neutral radical. A combination of improved spectral resolution, measurement of energy-dependent intensity effects, temperature control, and comparison to theory allows for full assignment of the vibronic features observed in this spectrum. We obtain a refined electron affinity of 3.9289(14) eV for NO3. Further, the appearance of Franck-Condon forbidden transitions from vibrationally cold anions to neutral states with excitation along the NO3 v4 mode confirms that these features arise from vibronic coupling with the excited state of NO3 and are not hot bands as has been suggested. Together, the suite of experimental and simulated results provides clear evidence that the v3 fundamental of NO3 resides near 1050 cm−1, addressing a long-standing controversy surrounding this vibrational assignment.


Keywords

radicals
vibronic coupling
spectroscopy
photodetachment

Supplementary materials

Title
Description
Actions
Title
NO3 SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.