An Autonomous Electrochemical Test stand for Machine Learning Informed Electrolyte Optimization

16 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


A fully automated, computer-controlled test stand capable of rapidly creating and electrochemically characterizing any arbitrary liquid electrolyte solution is described. Hundreds of different electrolytes were studied, and the results were used to verify the precision and accuracy of the system. To test the functionality of the approach, several 2-dimensional co-solvated electrolyte solutions containing blends of aqueous sulfates and nitrates were rapidly created and examined automatically. The test stand took less than a day to conduct these searches, while conventional manual methods would have taken much longer. The demonstrated standard error of the test-stand was 0.5 mS/cm on conductivity and 0.02 V for voltage stability window measurements, and several of the combinations studied revealing surprisingly high voltage stability and conductivity values. The demonstrated success of the test-stand in a 2-dimensional search spaces shows the promise of conducting high speed co-optimization studies of liquid electrolytes in particular when used in concert with a machine learning-based real time/in-loop data assessment computational package.


electrochemical testing
autonomous discovery
aqueous electrolytes

Supplementary materials

All Figures


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.