Intermolecular 3+3 Ring Expansion of Aziridines to Dehydropiperidines through the Intermediacy of Aziridinium Ylides

15 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Bicyclic aziridines undergo formal [3+3] ring expansion reactions when exposed to rhodium-bound vinyl carbenes to form complex dehydropiperidines in a highly stereocontrolled rearrangement. Mechanistic studies and DFT computations indicate the reaction proceeds through the formation of a vinyl aziridinium ylide; this reactive intermediate undergoes a concerted, asynchronous, pseudo-[1,4]- sigmatropic rearrangement to directly furnish the heterocyclic products with net retention at the new C-C bond. In combination with an asymmetric silver-catalyzed aziridination developed in our group, this method quickly delivers enantioenriched scaffolds with up to three contiguous stereocenters. The mild reaction conditions, functional group tolerance, and high stereochemical retention of this method are especially well-suited for appending piperidine motifs to natural product and complex molecules. Ultimately, our work establishes the value of underutilized aziridinium ylides as key intermediates in strategies to convert small, strained rings to larger N-heterocycles.

Keywords

aziridine
aziridinium ylide
piperidine
dehydropiperidine
Rh catalysis
carbene
nitrene
ring expansion

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.