Metal-Free Click Synthesis of Functional 1-Substituted-1,2,3-Triazoles

15 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The 1,2,3-triazole group is one of the most important connective linkers and functional aromatic heterocycles in modern chemistry. The boom in growth of, in particular, 1,4-disubstituted triazole products since the early 2000’s, can be largely attributed to the birth of click chemistry and the discovery of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Yet the synthesis of relatively simple, albeit important, 1-substituted-1,2,3-triazoles, has been surprisingly more challenging. We report a straightforward and scalable click-protocol for the synthesis of 1-substituted-1,2,3-triazoles from organic azides and the bench stable acetylene-surrogate, ethenesulfonyl fluoride (ESF). The transformation proceeds through a thermal 1,3-dipolar cycloaddition of the azide and ESF to give a sulfonyl fluoride substituted triazoline, that itself spontaneously aromatizes through formal loss of HF/SO2 to give the stable triazole products with excellent fidelity. The new click reaction tolerates a wide selection of substrates and proceeds smoothly under metal-free conditions to give the products in excellent yield, and without need for additives or chromatographic purification. Further, under controlled conditions, the 1-substituted-1,2,3-triazole products undergo Michael reaction with a second equivalent of ESF to give the unprecedented 1-substituted triazolium sulfonyl fluoride salts, demonstrating the versatility and orthogonal reactivity of ESF. The importance of this novel method is evidenced through the late-stage modification of several drugs and drug fragments, including the synthesis of a new improved derivative of the famous antibiotic, chloramphenicol.

Keywords

Metal-Free Click Chemistry
1,2,3-Triazole
Acetylene
Ethenesulfonyl Fluoride
Late-stage Functionalization

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.