N-Heterocyclic Carbene-Catalyzed Synthesis of Ynones via C–H Alkynylation of Aldehydes with Alkynyliodonium Salts

11 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Alkynylation of aldehydes with alkynyl(aryl)iodonium salts catalyzed by an N-heterocyclic carbene (NHC) has been developed. The application of the organocatalyst and the hypervalent iodine group-transfer reagent allowed for metal-free C–H functionalization and C–C bond formation. The reaction proceeds under exceptionally mild conditions, at –40 ⁰C and in the presence of an amine base, providing access to an array of heteroaryl-propargyl ketones containing various substituents in good to excellent yields. The mechanism of the reaction was investigated by means of both experiments and density functional theory calculations. 13C-labelling and computations determined that the key alkynyl transfer step occurs via an unusual direct SN2 substitution of iodine-based leaving group by Breslow intermediate nucleophile at an acetylenic carbon. Moreover, kinetic studies revealed that the turnover-limiting step of the catalytic cycle is the generation of the Breslow intermediate, whereas the subsequent C–C bond-formation is a fast process. These results were fully reproduced and rationalized by the computed full free energy profile of the reaction, showing that the largest energy span is located between protonated NHC and the transition state for the carbene attack on the aldehyde substrate.

Keywords

NHC organocatalysis
ynones
hypervalent iodine
alkynylation
mechanistic studies

Supplementary materials

Title
Description
Actions
Title
Kalek NHC-alkynylation SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.