Thermodynamic Separation of 1-Butene from 2-Butene in Metal–Organic Frameworks with Open Metal Sites

26 September 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Most C4 hydrocarbons are obtained as byproducts of ethylene production or oil refining, and complex and energy-intensive separation schemes are required for their isolation. Substantial industrial and academic effort has been expended to develop more cost-effective adsorbent- or membrane-based approaches to purify commodity chemicals such as 1,3-butadiene, isobutene, and 1-butene, but the very similar physical properties of these C4 hydrocarbons makes this a challenging task. Here, we examine the adsorption behavior of 1-butene, cis-2-butene and trans-2-butene in the metal–organic frameworks M2(dobdc) (M = Mn, Fe, Co, Ni; dobdc2 = 2,5-dioxidobenzene-1,4-dicarboxylate) and M2(m-dobdc) (m-dobdc4 = 4,6-dioxido-1,3-benzenedicarboxylate), which all contain a high density of coordinatively-unsaturated M2+ sites. We find that both Co2(m-dobdc) and Ni2(m-dobdc) are able to separate 1-butene from the 2-butene isomers, a critical industrial process that relies largely on energetically demanding cryogenic distillation. The origin of 1-butene selectivity is traced to the high charge density retained by the M2+ metal centers exposed within the M2(m-dobdc) structures, which results in a reversal of the cis-2-butene selectivity typically observed at framework open metal sites. Selectivity for 1-butene adsorption under multicomponent conditions is demonstrated for Ni2(m-dobdc) in both the gaseous and liquid phases via breakthrough and batch adsorption experiments.


Metal-Organic Frameworks
hydrocarbon separations


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.