Physical Chemistry

Time Resolved Transient Circular Dichroism Spectroscopy Using Synchrotron Natural Polarisation


Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the limitations of current broadband UV SRCD setups. This technique allows accessing ultrafast time scales (down to nanoseconds), previously measurable only by other methods, such as infrared (IR), nuclear magnetic resonance (NMR), fluorescence and absorbance spectroscopies and small angle X-ray scattering (SAXS). The tr-SRCD setup takes advantage of the natural polarisation of the synchrotron radiation emitted by a bending magnet to record broadband UV CD faster than any current SRCD setup, improving the acquisition speed from 10 mHz to 130 Hz and the accessible temporal resolution by several orders of magnitude. We illustrate the new approach by following the isomers concentration changes of an azopeptide after a photoisomerisation. This breakthrough in SRCD spectroscopy opens up a wide range of potential applications to the detailed characterisation of biological processes, such as protein folding, protein-ligand binding.

Version notes

V1.1 revised submission


Thumbnail image of Manuscriptv11.pdf

Supplementary material

Thumbnail image of SIv11.pdf