Highly Selective, Amine-Derived Cannabinoid Receptor 2 Probes

01 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The endocannabinoid (eCB) system is implied in various human diseases ranging from central nervous system to autoimmune disorders. Cannabinoid receptor 2 (CB2R) is an integral component of the eCB system. Yet, the downstream effects elicited by this G protein-coupled receptor upon binding of endogenous or synthetic ligands are insufficiently understood—likely due to the limited arsenal of reliable biological and chemical tools. Herein, we report the design and synthesis of CB2R-selective cannabinoids along with their in vitro pharmacological characterization (binding and functional studies). They combine structural features of HU-308 and AM841 to give chimeric ligands that emerge as potent CB2R agonists with high selectivity over the closely related cannabinoid receptor 1 (CB1R). The synthesis work includes convenient preparation of substituted resorcinols often found in cannabinoids. The utility of the synthetic cannabinoids in this study is showcased by preparation of the most selective high-affinity fluorescent probe for CB2R to date.


cannabinoid receptor 2
electrophilic ligands
fluorescent probe
endocannabinoid system


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.