Water-Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasi-Homogeneous Photocatalysis

24 September 2019, Version 1

Abstract

Heptazine-based polymeric carbon nitrides (PCN) are well established as promising photocatalysts for light-driven redox transformations. However, the activity of these materials is hampered by their low surface area translating into low concentration of active sites accessible for reactants. Herein, we report, for the first time, a bottom-up preparation of PCN nanoparticles with a narrow size distribution (~10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months, and allow carrying out photocatalysis under quasi-homogeneous conditions. The rate of selective (up to 100%) photooxidation of 4-methoxybenzyl alcohol to 4-methoxybenzaldehyde was enhanced by the factor of 6.5 as compared to conventional solid PCN and was accompanied by simultaneous H2O2 production via reduction of oxygen. The dissolved photocatalyst can be easily recovered and re-dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity. This work thus establishes a new paradigm of easily operable quasi-homogeneous photocatalysis with PCN, and opens up a route for other applications in which liquid aqueous operation or processing of PCN is required.

Keywords

Photocatalysis
Nanoparticles
Carbon Nitride
Chemoselectivity
Reusability

Supplementary materials

Title
Description
Actions
Title
Krivtsov SI final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.