Abstract
Pinching molecules via chemical strain suggests intuitive consequences, such as compression at the pinched site, and clothespin-like opening of other parts of the structure. If this opening affects two spin centers, it should result in reduced communication between them. We show that for a naphthalene-bridged biscobaltocenes with competing through-space and through-bond pathways, the consequences of pinching are far less intuitive: despite the known dominance of through-space interactions, the bridge plays a much larger role for exchange spin coupling than previously assumed. Based on a combination of chemical synthesis, structural, magnetic and redox characterization, and a newly developed first-principles theoretical pathways analysis, we can suggest a comprehensive explanation for this nonintuitive behavior. These results are of interest for molecular spintronics, as naphthalene-linked cobaltocenes can form wires on surfaces for potential spin-only information transfer.
Supplementary materials
Title
Supporting Info-final
Description
Actions