Impact of Presence and Concentration of Ionic Species on Regeneration Efficacy of Zeolites for Ammonium Removal

23 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

One of the biggest challenges to implementing ion exchange processes in full scale at wastewater treatment works is regeneration of the media. In this paper, regeneration efficiency as a function of brine type, brine reuse, molarity and pH was investigated for the zeolite MesoLite treating synthetic solutions of ammonium. When pretreating the zeolite with KCl rather than NaCl, a 30% improvement in regeneration efficiency was found in the first cycle, which dropped to a 10% improvement in the fifth cycle. For both systems, the observed uptake capacity during the load cycle remained constant, indicating that both were effective and that the brine could be reused five times without deterioration in the performance of the zeolite. The use of KCl was more effective at lower molarities than NaCl such that equivalent regeneration efficiencies were observed at 1.0M and 0.1M for NaCl and KCl respectively. Alteration of the pH between 9 and 12 had no impact on the regeneration efficiency. However, operation at pH 12 was possible without brine. Taken together, these findings indicate that the choice of regenerant can have significant implications on regeneration efficiency and that potassium chloride might be a potentially viable alternative choice.

Keywords

Ammonium
MesoLite
regeneration
capacity
pretreatment

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.