Intraresidual Correlated Motions in Peptide Chain

23 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Conformational flexibility of polypeptide chains is mainly driven by changes in the (phi, psi) dihedrals of each residue. Such motions, however, are not completely independent, as certain (anti)correlated motions are favored. In this work, we investigate the correlations between the dihedral displacements of adjacent residues, (Δphi i, Δpsi i+1) and (Δphi i-1, Δpsi i), i.e. interresidual, and within the same residue, (Δphi i, Δpsi i), i.e. intraresidual, by analyzing extensive Molecular Dynamics trajectories of initially extended polyalanine chains in detail. Correlations are evaluated individually at different residue conformations covering the whole (phi, psi)-space. From these we draw maps which clearly show how the coupled motions strongly depend on the conformation, thus unveiling an unprecedented strong intramolecular correlation displaying opposite (correlated/anticorrelated) behaviors at different conformations. By developing a tailored model, it is also demonstrated that both inter and intraresidual correlations arise from the propensity of the peptide to minimize the overall atomic displacements along the whole polypeptide chain.

Keywords

Protien dynamics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.