Atom Condensed Fukui Function for Condensed Phases and Biological Systems and Its Application to Enzymatic Fixation of Carbon Dioxide

01 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Local reactivity descriptors such as atom condensed Fukui functions are promising computational tools to study chemical reactivity at specific sites within a molecule. Their applications have been mainly focused on isolated molecules in their most stable conformation without considering the effects of the surroundings. Here, we propose to combine QM/MM Born-Oppenheimer molecular dynamics simulations to obtain the microstates (configurations) of a molecular system using different representations of the molecular environment and calculate Boltzmann weighted atom condensed local reac- tivity descriptors based on conceptual DFT. Our approach takes the conformational fluctuations of the molecular system and the polarization of its electron density by the environment into account allowing us to analyze the effect of macroscopic variables like temperature or changes in the molecular environment on reactivity. In this contribu- tion, we apply the method mentioned above to the catalytic fixation of carbon dioxide by crotonyl-CoA carboxylase/reductase and study if the enzyme alters the reactivity of its substrate compared to an aqueous solution. Our main result is that the protein en- vironment activates the substrate by the elimination of solute-solvent hydrogen bonds from aqueous solution in the two elementary steps of the reaction mechanism: the nucleophilic attack of a hydride anion from NADPH on the α, β unsaturated thioester and the electrophilic attack of carbon dioxide on the formed enolate species.

Keywords

Fukui Function
Reactivity descriptors
QM/MM
Enzyme Catalysis

Supplementary materials

Title
Description
Actions
Title
TOC BWFF
Description
Actions
Title
si BW AC FF
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.