Atmospheric Pressure Microplasma for Antibacterial Silver Nanoparticle/Chitosan Nanocomposites With Tailored Properties

20 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Room temperature atmospheric pressure microplasma (APM) was deployed for the first time for the in situ synthesis of anti-bacterial silver nanoparticle / chitosan (AgNP/CS) nanocomposites. The plasma induced liquid chemistry plays a role in the in situ formation of AgNP, the size distribution of which depends on the silver salt precursor concentration. The microplasma process has also simultaneously tailored the physical properties of the composites, rendering more crosslinked chitosan polymer network with shorter molecular chains. The formation of AgNP within the in situ modified chitosan has led to nanocomposites with overall improved mechanical properties and better stability in simulated body fluid. Our plasma synthesized AgNP/CS nanocomposites also demonstrate effective antibacterial properties against E. Coli and S. Aureus bacterial strains, showing their promise in potential antimicrobial applications.

Keywords

Atmospheric pressure microplasma silver nanoparticle, chitosan, antibacterial

Supplementary materials

Title
Description
Actions
Title
Cover letter
Description
Actions
Title
Supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.