Time-dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AIE-active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation

17 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Pathogen infection and cancer are the two major human health problems. In this work, we achieved an organic salt photosensitizer (PS), called 4TPA-BQ with aggregation-induced emission feature via one-step reaction. Owing to the aggregation-induced reactive oxygen species generation effect and sufficient small ΔEST, 4TPA-BQ shows a satisfactorily high 1O2 generation efficiency of 97.8%. In vitro and in vivo experiments confirmed that 4TPA-BQ exhibited potent photodynamic antibacterial performance against ampicillin-resistant Escherichia coli with good biocompatibility in a short time (15 min). When the incubation time persisted long enough (12 h), cancer cells were ablated efficiently, leaving normal cells essentially unaffected. This is the first reported time-dependent fluorescence-guided photodynamic therapy in one individual PS for ordered and multiple targeting by varying the external conditions. This can update the design principle of efficient PSs in potential clinical applications.


aggregation-induced emission anion-π+ interactions time-dependent photodynamic therapy multiple and ordered targeting


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.