Water Dynamics in Hydrated Carboxylated Cellulose Nanofibril Membranes

17 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cellulose nanofibrils (CNF) are a class of materials with good mechanical properties, surface functionality and bio-/environmental friendliness. They have been used in many applications as loading material or function materials, where water-cellulose interaction determines the materials performance. Especially, CNF with carboxylated groups can be used as the separation membrane in polymer electrolyte membrane fuel cell. The water dynamics is closely related to the proton conductivity. The Non-destructive quasi-elastic neutron scattering (QENS) is used to characterized water movement in hydrated membrane made of CNF prepared by TEMPO-oxidation with different surface charges. However, neither surface charge nor the nanoconfinement due to membrane swelling has large impact on water dynamics mechanism. A slow diffusive motion is found with the diffusion coefficient close to bulk water and that in hydrated Nafion membrane regardless the surface charge, while a fast motion is rather localized with a correlation time increasing as temperature increase, which might related to the hydrogen bond network formation between water and CNF.

Keywords

nanocellulose
water dynamics
QENS

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.