Real Time Nuclear Magnetic Resonance Detection of Fumarase Activity using Parahydrogen-Hyperpolarized [1-13C]fumarate

17 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hyperpolarized fumarate can be used as a probe of real-time metabolism in vivo, using carbon-13 magnetic resonance imaging. Dissolution dynamic nuclear polarization is commonly used to produce hyperpolarized fumarate, but a cheaper and faster alternative is to produce hyperpolarized fumarate via PHIP (parahydrogen induced polarization). In this work we trans-hydrogenate [1-13C]acetylene dicarboxylate with para-enriched hydrogen using a commercially available Ru catalyst in water to produce hyperpolarized [1-13C]fumarate. We show that fumarate is produced in 89% yield, with succinate as a side product in 11% yield. The proton polarization is converted into 13C magnetization using a constant adiabaticity field cycle, and a polarization level of 25% is achieved using 86% para-enriched hydrogen gas. We inject the hyperpolarized [1-13C]fumarate into cell suspensions and track the metabolism. This work opens the path to greatly accelerated preclinical studies using fumarate as a biomarker.

Keywords

NMR techniques
hyperpolarized NMR spectroscopy
Cell metabolism
Fumarate

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.