Characterization of an L-Ascorbate Catabolic Pathway with Unprecedented Enzymatic Transformations

12 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


L-Ascorbate (vitamin C) is ubiquitous in both our diet and the environment. Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699) uses L-ascorbate as sole carbon source but lacks the genes encoding the known catabolic pathways. RNAseq identified eight candidate catabolic genes. Sequence similarity networks and genome neighborhood networks guided predictions for function of the encoded proteins; the predictions were confirmed by in vitro assays and in vivo growth phenotypes of gene deletion mutants. L-Ascorbate, a lactone, is oxidized and ring-opened by enzymes in the cytochrome b561 and gluconolactonase families, respectively, to form 2,3-diketo-L-gulonate. A protein predicted to have a WD40-like fold catalyzes an unprecedented benzilic acid rearrangement involving migration of a carboxylate group to form 2-carboxy-L-lyxonolactone; the lactone is hydrolyzed by a member of the amidohydrolase superfamily to yield 2-carboxy-L-lyxonate. A member of the PdxA family of oxidative decarboxylases catalyzes a novel decarboxylation that uses NAD+ catalytically. The product, L-lyxonate, is catabolized to alpha-ketoglutarate by a previously characterized pathway.


vitamin C

Supplementary materials

Characterization of an L-Ascorbate Catabolic Pathway with Unprecedented Enzymatic Transformations Draft Supplementary


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.