Abstract
DNA and peptides are two of the most commonly used biomolecules for building self-assembling materials, but few examples exist of hybrid nanostructures that contain both components. Here we report the modification of two peptides that comprise a coiled-coil heterodimer pair with orthogonal DNA handles in order to link DNA origami nanostructures bearing complementary strands into micrometer long one-dimensional arrays. We probed the effect of number of coils on self-assembly and demonstrated the formation of self-assembled structures through multiple routes, to form dimers and trimers, an alternating copolymer of two different origami bundles, and stepwise assembly of purified structures with coiled-coil conjugates. Our results demonstrate the successful merging of two distinct self-assembly modes to create hybrid bionanomaterials expected to have a range of potential applications in the future.