Dual Electrocatalysis Enables Enantioselective Hydrocyanation of Conjugated Alkenes

10 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chiral nitriles and their derivatives are prevalent in pharmaceuticals and bioactive compounds. Enantioselective alkene hydrocyanation represents a convenient and efficient approach for synthesizing these molecules. However, a generally applicable method featuring a broad substrate scope and high functional group tolerance remains elusive. Here, we address this long-standing synthetic problem using an electrocatalytic strategy. Electrochemistry allows for the seamless combination of two classic radical reactions—cobalt-mediated hydrogen-atom transfer and copper-promoted radical cyanation—to accomplish highly enantioselective hydrocyanation without the need for stoichiometric oxidant. We harness electrochemistry’s unique feature of precise potential control to optimize the chemoselectivity of challenging substrates. Computational analysis sheds light on the origin of enantioinduction, for which the chiral catalyst imparts a combination of attractive and repulsive non-covalent interactions that direct the enantio-determining C–CN bond formation. This discovery demonstrates the power of electrochemistry in accessing new chemical space and providing solutions to pertinent challenges in synthetic chemistry.

Keywords

Electrocatalysis
Electroorganic Synthesis
Radical catalysis
Hydrocyanation
Asymmetric electrocatalysis
Asymmetric Hydrocyanation

Supplementary materials

Title
Description
Actions
Title
00 Lin TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.