Biological and Medicinal Chemistry

Chemogenetic Control of Protein Anchoring to Endomembranes in Living Cells with Lipid-Tethered Small Molecules

Abstract

The Self-localizing Ligand-Induced Protein Translocation(SLIPT) system is an emerging platform that controls protein localization in living cells using synthetic self-localizing ligands (SLs). Here, we report a chemogenetic SLIPT system for inducing protein translocation from the cytoplasm to the surface of the endoplasmic reticulum (ER) and Golgi membranes, referred to as endomembranes.By screening a series of lipid-trimethoprim (TMP) conjugates, we found oleic acid-tethered TMP (oleTMP) to be the optimal SL that efficiently relocated and anchored Escherichiacoli dihydrofolate reductase (eDHFR)-fusion proteins toendomembranes. We showed that oleTMP mediated protein anchoring to endomembranes within minutes and could be reversed by the addition of free TMP. We also applied the endomembrane SLIPT system to artificially activate endomembrane Ras and inhibit the active nuclear transport of extracellular signal-regulated kinase (ERK), demonstrating its applicability for manipulating biological processes in living cells. We envision that the present oleTMP-based SLIPT system, which affords rapid and reversible control of protein anchoring to endomembranes, will offer a new unique tool for the study and control of spatiotemporally regulated cell signaling processes.

Content

Thumbnail image of Manuscript_ChemRxiv.pdf

Supplementary material

Thumbnail image of Movie S5.mov
Movie S5
Thumbnail image of 17486699.mov
Movie S4
Thumbnail image of Movie S3.mov
Movie S3
Thumbnail image of Movie S2.mov
Movie S2
Thumbnail image of Movie S1.mov
Movie S1
Thumbnail image of Supporting Information.pdf
Supporting Information