Machine Learning for Acute Oral System Toxicity Regression and Classification

28 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In vivotoxicity testing remains a costly and time-consuming component of any pre-clinical drug development campaign. In particular, LD50 measurements require the loss of animal life but remain a critical component in preventing lethal compounds from entering the clinic. With advances in machine learning, in silicoLD50 prediction now has the potential to greatly reduce this burden. We study various types of machine learning models to predict acute oral LD50 measurements in rats as regression and classification problems. We demonstrate that transfer learning a ResNet34 model pretrained on ImageNet with test time augmentation generates the best performing regression model and that random forest augmented with conformal prediction provides a robust methodology to perform classification.

Keywords

Machine Learning Predictions
Drug discovery

Supplementary materials

Title
Description
Actions
Title
supplementary-table2
Description
Actions
Title
supplementary-table1
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.