Materials Science

Temperature-Induced Liquid Crystal Microdroplet Formation in a Partially Miscible Liquid Mixture

Abstract

The controlled formation of microdroplets through temperature variation is an intriguing concept for binary liquid mixtures with a critical solution temperature. Here, we investigate this phenomenon for a blend of methanol (MeOH) and a thermotropic liquid crystal (LC) 4-Cyano-4’-pentylbiphenyl (5CB). A near-room-temperatureinduced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This fully reversible process is an interesting material system with relevance in diagnostics, optoelectronics, materials templating and extraction processes.

Content

Thumbnail image of LC droplets_v3.pdf

Supplementary material

Thumbnail image of SI_LC droplets_v2.pdf
SI LC droplets v2