Cucurbit[8]uril-Derived Graphene Hydrogels

20 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The scalable production of uniformly distributed graphene (GR)-based composite materials remains a sizable challenge. While GR-polymer nanocomposites can be manufactured at large scale, processing limitations result in poor control over the homogeneity of hydrophobic GR sheets in the matrices. Such processes often result in difficulties controlling stability and avoiding aggregation, therefore eliminating benefits that might have otherwise arisen from the nanoscopic dimensions of GR. Here, we report an exfoliated and stabilized GR dispersion in water. Cucurbit[8]uril (CB[8])-mediated hostguest chemistry was used to obtain supramolecular hydrogels consisting of uniformly distributed GR and guest-functionalized macromolecules. The obtained GR-hydrogels show superior bioelectrical properties over identical systems produced without CB[8]. Utilizing such supramolecular interactions with biologically-derived macromolecules is a promising approach to stabilize graphene in water and avoid oxidative chemistry.

Keywords

graphene
cucurbituril
supramolecular interactions

Supplementary materials

Title
Description
Actions
Title
esi
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.