Protein Flexibility Catalyzes a Cell Signaling Reaction of the Ras-GAP Complex

20 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Many enzyme molecules exhibit characteristic global and slow dynamics which furnish them with allostery realizing remarkable molecular functionalities more than simple chemical catalysis. However, molecular mechanism of a catalytic reaction associated with the molecular flexibility of enzymes is not well-understood. Here we report a hybrid molecular simulation study on GTPase activity of a Ras-GAP protein complex for cell signaling termination. We unveiled that extensive conformational changes of the protein complex and exclusion of internal water molecules are induced upon the transition state (TS) formation in the catalytic reaction and significantly lower the reaction activation free energy. We also revealed that tumor-related mutations perturb those conformational changes upon the TS formation, leading to reduction of the catalytic activity. The findings of the remarkably dynamic protein conformation directly linking to the catalytic reaction have broad implications for understanding of enzyme mechanism and for developments of allosteric drugs and novel catalysts.


Protein dynamics
cell signaling
QM/MM simulation


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.