Controllable, Sequential, and Stereoselective C–H Allylic Alkylation of Alkenes

19 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The direct conversion of C–H bonds into new C–C bonds represents a powerful approach to generate complex molecules from simple starting materials. However, a general and controllable method for the sequential conversion of a methyl group into a fully substituted carbon center remains a challenge. We report a new method for the selective and sequential replacement of three C-H bonds at the allylic position of propylene and other simple terminal alkenes with different carbon groups derived from Grignard reagents. A copper catalyst and electron-rich biaryl phosphine ligand facilitate the formation of allylic alkylation products in high branch-selectivity. We also present conditions for the generation of enantioenriched allylic alkylation products in the presence of catalytic copper and a chiral phosphine ligand. With this approach, diverse and complex products with substituted carbon centers can be generated from simple and abundant feedstock chemicals.


Allylic Alkylation Reactions
copper catalysis
enantioselective allylic alkylation reaction
Asymmetric Catalysis
Enantioselective Catalysis
alkene chemistry

Supplementary materials

Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.