Selective Growth of Al2O3 on Size-Selected Platinum Clusters by Atomic Layer Deposition

15 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


In heterogeneous catalysis, atomic layer deposition (ALD) has been developed as a tool to stabilize and reduce carbon deposition on supported nanoparticles. Here, we discuss use of high vacuum ALD to deposit alumina films on size-selected, sub-nanometer Pt/SiO2 model catalysts. Mass-selected Pt24 clusters were deposited on oxidized Si(100), to form model Pt24/SiO2 catalysts with particles shown to be just under 1 nm, with multilayer three dimensional structure. Alternating exposures to trimethylaluminum and water vapor in an ultra-high vacuum chamber were used to grow alumina on the samples without exposing them to air. The samples were probed in situ using X-ray photoelectron spectroscopy (XPS), low-energy ion scattering spectroscopy (ISS), and CO temperature-programmed desorption (TPD). Additional samples were prepared for ex situ experiments using grazing incidence small angle x-ray scattering spectroscopy (GISAXS). Alumina growth is found to initiate at least 60 times more efficiently at the Pt24 cluster sites, compared to bare SiO2/Si, with a single ALD cycle depositing a full alumina layer on top of the clusters, with substantial additional alumina growth initiating on SiO2 sites surrounding the clusters. As a result, the clusters were completely passivated, with no exposed Pt binding sites.


Atomic Layer Deposition


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.