Metal-Free Photoredox-Catalyzed C–H/C–H Coupling of Arenes Enabled by Interrupted Pummerer Activation

30 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Aryl–aryl cross-coupling constitutes one of the most widely used procedures for the synthesis of high-value materials, ranging from pharmaceuticals to organic electronics and conducting polymers. The assembly of (hetero)biaryl scaffolds generally requires multiple steps; coupling partners must be functionalized before the key bond-forming event is considered. Thus, the development of selective C–H arylation processes in arenes, that side-step the need for prefunctionalized partners, is crucial for streamlining the construction of these key architectures. Here we report an expedient, one-pot assembly of (hetero)biaryl motifs using photocatalysis and two non-prefunctionalized arene partners. The approach is underpinned by the activation of a C–H bond in an arene coupling partner using the interrupted Pummerer reaction. A unique pairing of the organic photoredox catalyst and the intermediate dibenzothiophenium salts enables highly selective reduction in the presence of sensitive functionalities. The utility of the metal-free, one-pot strategy is exemplified by the synthesis of a bioactive natural product and the modification of complex molecules of societal importance.


Pummerer reaction
photoredox reaction
Cross-coupling reactions

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.