Soft-Photoconversion Using Floating Self-Assembled Crystalline Films of Porphyrin Nanostructures

29 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


One of many evolved functions of biological cell membranes is to induce and regulate self-assembly of photoactive molecules into efficient light harvesting nanomaterials. Synthetic molecular assemblies at soft interfaces exhibit macroscale long-range order and so provide routes to biomimetic analogues that minimise concentration quenching. Here, we report the facile assembly of free-standing layered crystalline films of zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrin nanostructures that exhibit significant photocurrents in situ at an electrified liquid | liquid interface. This methodology does not require acidic conditions, specialised amphiphilic porphyrins, or the use of additives or external stimuli. The assembly process is driven by an interplay between the hydrophobicity gradient at an immiscible aqueous | organic interface and optimised hydrogen bonding in the formed nanostructure. Highly-ordered interfacial nanostructures may provide a new paradigm for realisation of light-harvesting antennae in artificial photosynthetic technologies.


Porphyrin nanostructures
Molecular self-assembly
Immiscible liquid-liquid interface
Energy conversion and storage

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.