Nanoscale Mapping of Non-Uniform Heterogeneous Nucleation Kinetics Mediated by Surface Chemistry

26 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nucleation underlies the formation of many liquid-phase synthetic and natural materials with applications in materials chemistry, geochemistry, biophysics, and structural biology. Most liquid-phase nucleation processes are heterogeneous, occurring at specific nucleation sites at a solid-liquid interface; however, the chemical and topographical identity of these nucleation sites and how nucleation kinetics vary from site-to-site remains mysterious. Here we utilize in situ liquid cell electron microscopy to unveil counterintuitive nanoscale non-uniformities in heterogeneous nucleation kinetics on a macroscopically uniform solid-liquid interface. Time-resolved in situ electron microscopy imaging of silver nanoparticle nucleation at a water-silicon nitride interface showed apparently randomly-located nucleation events at the interface. However, nanometric maps of local nucleation kinetics uncovered nanoscale interfacial domains with either slow or rapid nucleation. Interestingly, the interfacial domains vanished at high supersaturation ratio, giving way to rapid spatially uniform nucleation kinetics. Atomic force microscopy and nanoparticle labeling experiments revealed a topographically flat, chemically heterogeneous interface with nanoscale interfacial domains of functional groups similar in size to those observed in the nanometric nucleation maps. These results, along with a semi-quantitative nucleation model, indicate that a chemically non-uniform interface presenting different free energy barriers to heterogeneous nucleation underlies our observations of non-uniform nucleation kinetics. Overall, our results introduce a new imaging modality, nanometric nucleation mapping, and provide important new insights into the impact of surface chemistry on microscopic spatial variations in heterogeneous nucleation kinetics that have not been previously observed.

Keywords

Crystallization
in situ TEM
surface chemistry
Heterogeneous Nucleation
nucleation site
nucleation
Liquid cell TEM

Supplementary materials

Title
Description
Actions
Title
Supplementary Material submit revision ChemrXiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.