Introducing QUBE: Quantum Mechanical Bespoke Force Fields for Protein Simulations

10 January 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular mechanics force field parameters for macromolecules, such as proteins, are traditionally fit to reproduce experimental properties of small molecules, and thus they neglect system-specific polarization. In this paper, we introduce a complete QUantum mechanical BEspoke (QUBE) protein force field, which derives non-bonded parameters directly from the electron density of the specific protein under study. The main backbone and sidechain protein torsional parameters are re-derived in this work by fitting to quantum mechanical dihedral scans for compatibibility with QUBE non-bonded parameters. Software is provided for the preparation of QUBE input files. The accuracy of the new force field, and the derived torsional parameters, are tested by comparing the conformational preferences of a range of peptides and proteins with experimental measurements. Accurate backbone and sidechain conformations are obtained in molecular dynamics simulations of dipeptides, with NMR J coupling errors comparable to the widely-used OPLS force field. In simulations of five folded proteins, the secondary structure is generally retained and the NMR J coupling errors are similar to standard transferable force fields, although some loss of the experimental structure is observed in certain regions of the proteins. Overall, with several avenues for further development, the use of system-specific non-bonded force field parameters is a promising approach for next-generation simulations of biological molecules.

Keywords

force fields
quantum mechanics
molecular mechanics
software
parametrization
protein
molecular dynamics
atoms-in-molecule
density functional theory
torsional parameters

Supplementary materials

Title
Description
Actions
Title
SI QM Biomolecular Force Fields 9 jan
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.