Thiol-Methylsulfone Based Hydrogels: Enhanced Control on Gelation Kinetics for 3D Cell Encapsulation

22 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Hydrogels are useful temporal matrices for cell culture technologies. The successful mixing and encapsulation of cells within the gel requires the selection of efficient and cytocompatible gelation reactions occurring in the minute timescale under physiological conditions. The thiol-methylsulfonyl (MS) chemical reaction is introduced here as a novel chemistry to encapsulate cells in polymeric matrices. Thiol-MS crosslinking does not require a light activation step and can occur within the seconds-to-minutes timescale by adjusting the pH in the physiological range 8.0-6.6. This reaction is cytocompatible and the reaction product is hydrolytically stable in cell culture media up to 4 weeks. Cell encapsulation protocols enabling comfortable handling and yielding homogenous distribution of the embedded cells are described. All these features are relevant for the application of this crosslinking reaction to biomedical scenarios. Finally, this manuscript also compares the performance of thiol-MS hydrogels with the established thiol-maleimide and thiol-vinylsulfone hydrogels. The benefit of thiol-MS crosslinking in terms of control over hydrogelation kinetics is demonstrated.


3D cell culture
thiol-mediated chemistry
coupling under physiological conditions
aromatic methylsulfones
gelation kinetics

Supplementary materials

SuppInformation PaezJI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.