Demystifying the Soai Reaction

23 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The extraordinary Soai reaction has profoundly impacted chemists’ perspective of chiral symmetry breaking, absolute asymmetric synthesis and its role in the origin of biological homochirality. Herein, we describe the unprecedented observation of asymmetry amplifying autocatalysis in the alkylation of 5-(trimethylsilylethynyl)pyridine-3-carbaldehyde using diisopropylzinc. Kinetic studies with a “Trojan-horse” substrate and spectroscopic analysis of a series of zinc-alkoxides that incorporate specific structural mutations reveal a ‘pyridine-assisted cube escape’. The new cluster functions as a catalyst that activates the ‘floor-to-floor’ bound aldehyde and poises a coordinated diisopropylzinc moiety for alkyl group transfer. Transitionstate models leading to both the homochiral and heterochiral products were validated by density functional theory calculations. Moreover, experimental and computational analysis of the heterochiral complex provides a definitive explanation for the non-linear behavior of this system. Our deconstruction of the Soai system contributes substantially to understanding the mechanism of this transformation that has stood as a longstanding challenge in chemistry.

Keywords

Asymmetric Autocatalysis
Absolute Asymmetric Synthesis
Nonlinear Effects

Supplementary materials

Title
Description
Actions
Title
Supplementary Information ChemrXiV
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.