Aggregation-Induced Emission Luminogen: The New Perspective in Photo-Degradation of Organic Pollution

19 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Both the variety and uniqueness of organic semiconductors has contributed to the rapid development of environmental engineering applications and renewable fuel production, typified by photo-degradation of organic pollutants or water splitting. This paper presents a rare example of an aggregation-induced emission luminogen (AIEgen) as a highly efficient photo-catalyst for pollutant decomposition in an environmentally relevant application. Under irradiation, the tetraphenylethene-based AIEgen (TPE-Ca) exhibited high photo-degradation efficiency of up to 98.7% of Rhodaminein (RhB) in aqueous solution. The possible photocatalytic mechanism was studied by electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) spectra, electrochemistry, thermal imaging technology, ultra-performance liquid chromatography and high-definition mass spectrometry (UPLC/HDMS), as well as by density functional theory (DFT) calculations. Cytotoxicity experiments indicated that the final photo-catalytic degradation products show biocompatibility. Among the many diverse AIEgens, this is the first AIEgen to be developed as a photo-catalyster of organic pollutants. This research will open up new avenues for AIEgens research, particularly for applications of environmental relevance.


Aggregation-Induced Emission
Organic Pollution
aqueous solution

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.