Structurally Diverse Covalent Triazine-based Framework Materials for Photocatalytic Hydrogen Evolution from Water

17 July 2019, Version 1


A structurally diverse family of 39 covalent triazine-based framework materials (CTFs) is synthesized by Suzuki-Miyaura polycondensation and tested as hydrogen evolution photocatalysts using a high-throughput workflow. The two best-performing CTFs are based on benzonitrile and dibenzo[b,d]thiophene sulfone linkers, respectively, with catalytic activities that are among the highest for this material class. The activities of the different CTFs are rationalized in terms of four variables: the predicted electron affinity, the predicted ionization potential, the optical gap, and the dispersibility of the CTFs particles in solution, as measured by optical transmittance. The electron affinity and dispersibility in solution are the best predictors of photocatalytic hydrogen evolution activity.


Supplementary materials

DraftFinal unlinked
ESI Final unlinked


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.