Towards a Rational Design of Laser-Coolable Molecules: Insights from Equation-of-Motion Coupled-Cluster Calculations

15 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Access to cold molecules is critical for quantum information science, design of new sensors, ultracold chemistry, and search of new phenomena. These applications depend on the ability to laser-cool molecules. Theory and qualitative models can play a central role in narrowing down the vast pool of potential candidates amenable to laser cooling. We report a systematic study of structural and optical proper- ties of alkaline earth metal derivatives in the context of their applicability in laser cooling using equation-of-motion coupled-cluster methods. To rationalize and gen- eralize the results from high-level electronic structure calculations, we develop an effective Hamiltonian model. The model explains the observed trends and suggests new principles for the design of laser-coolable molecules.

Keywords

Laser cooling
quantum information science

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.