Abstract
Silk and cellulose are biopolymers that show a high potential as future sustainable materials.They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. Therein, a major challenge concerns balancing structure and properties in the assembly process. We used recombinant proteins with triblock architecture combining structurally modified spider silk with terminal cellulose affinity modules. Flow-alignment of cellulose nanofibrils and triblock protein allowed a continuous fiber production.The protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures to beta sheets. This gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials, and emphasize the key role of controlled assembly at multiple length scales for realization.
Supplementary materials
Title
Mohammadi 2019A supplementary
Description
Actions