Toward Smaller Aqueous-Phase Plasmonic Gold Nanoparticles: High-Stability Thiolate-Protected ~ 4.5 Nm Cores

11 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Most applications of aqueous plasmonic gold nanoparticles benefit from control of the core size and shape, control of the nature of the ligand shell, and a simple and widely applicable preparation method. Surface functionalization of such nanoparticles is readily achievable but is restricted to water-soluble ligands. Here we have obtained highly monodisperse and stable smaller aqueous gold nanoparticles (core diameter ~ 4.5-nm), prepared from citrate-tannate precursors via ligand exchange with each of three distinct thiolates: 11-mercaptoundecanoic acid, a-R-lipoic acid, and para-mercaptobenzoic acid. These are characterized by UV-Vis spectroscopy for plasmonic properties; FTIR spectroscopy for ligand exchange confirmation; X-ray diffractometry for structural analysis; and high-resolution transmission electron microscopy for structure and size determination. Chemical reduction induces a blueshift, maximally +0.02-eV, in the localized surface-plasmon resonances band; this is interpreted as an electronic (-) charging of the MPC gold core, corresponding to a -0.5-V change in electrochemical potential.

Keywords

Plasmonics
FT-IR spectroscopy
Core Charging
Ligand exchange
4.5 nm Au NPs

Supplementary materials

Title
Description
Actions
Title
SI-Section of ~ 4.5 nm Au NPs
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.