Enantioselective Recognition of Chiral Guests by the Water-Soluble Chiral Keplerate {Mo132} Spherical Capsule with 30 Inner Lactate Ligands

10 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Investigations of chiral host guest chemistry are important to explore recognition in confined environments. Here, by synthesizing water-soluble chiral porous nanocapsule based on the inorganic metal-oxo Keplerate-type cluster, {Mo132} with chiral lactate ligands with the composition [Mo132O372(H2O)72(x-Lactate)30]42- (x = D or L), it was possible to study the interaction with a chiral guest, L/D-carnitine and (R/S)-2-butanol in aqueous solution. The enantioselective recognition was studied by quantitative 1H NMR and 1H DOSY NMR which highlighted that the chiral recognition is regulated by two distinct sites. Differences in the association constants (K) of L- and D-carnitine, which, due to their charge, are generally restricted from entering the interior of the host, are observed, indicating that their recognition predominantly occurs at the surface pores of the structure. Conversely, a larger difference in association constants (KS/KR = 3) is observed for recognition within the capsule interior of (R)- and (S)-2-butanol.


chiral capsules
polyoxometallate chemistry


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.