Discovering Ferro- and Piezoelectricity in Lead-Free Oxyhydrides Ln2H4O (Ln = Y, La)

08 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

One of the most significant aspects of crystal chemistry of multianionic oxyhydrides is the possibility of flexible regulation of the composition-structure-function relationships. In the context of competitive coordinations of different anions in the crystal lattice, this may afford formation of a number of stable stoichiometric phases without inversion symmetry. In the present work, we demonstrated that semiconducting yttrium and lantanium oxyhydrides with the composition Ln2H4O (Ln=Y, La) have an attractive potential for the design of novel lead-free ferro- and piezoelectric systems. By means of advanced DFT-based computational simulations we predicted that several polar monoclinic and orthorhombic phases of Ln2H4O may exhibit exceptional ferro- and piezoelectric properties as well as electromechanical coupling characteristics that are especially suitable for the piezoelectric devices working in a shear mode. Structure-dependent theoretical evaluations of the relevant physical responses demonstrated estimates of ferro- and piezoelectric characteristics that are comparable with the specifications of advanced ferroelectric solid solutions. Thus, our prediction of lead-free piezoelectric systems forms a solid and technologically reliable basis for the future development of effective and non-hazardous materials.

Keywords

piezoelectric
ferroelectric
mixed-anion compound
oxyhydrides
structure-property relationships
first-principle modeling
DFT

Supplementary materials

Title
Description
Actions
Title
Supporting information Preprint-oxyhydrides 07 07 2019
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.