Predicting Intermetallic Surface Energies with High-Throughput DFT and Convolutional Neural Networks

08 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Surface energy of inorganic crystals is crucial in understanding experimentally-relevant surface properties and thus important in designing materials for many applications including catalysis. Predictive methods and datasets exist for surface energies of monometallic crystals but predicting these properties for bimetallic or more complicated surfaces is an open challenge. Here we present a workflow for predicting surface energies \textit{ab initio} using high-throughput DFT and a machine learning framework. We calculate the surface energy of 3,285 intermetallic alloys with combinations of 36 elements and 47 space groups. We used this high-throughput workflow to seed a database of surface energies, which we used to train a crystal graph convolutional neural network (CGCNN). The CGCNN model was able to predict surface energies with a mean absolute test error of 0.0082 eV/angstrom^2 and can qualitatively reproduce nanoparticle surface distributions (Wulff constructions). Our workflow provides quantitative insights into which surfaces are more stable and therefore more realistic. It allows us to down-select interesting candidates that we can study with robust theoretical and experimental methods for applications such as catalysts screening and nanomaterials synthesis.

Keywords

machine learning
computational chemistry
high-throughput DFT

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.