Impact of Stereo- and Regiochemistry on Energetic Materials

04 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The synthesis, physical properties and calculated performances of six stereo- and regioisomeric cyclobutane nitric ester materials is described. While the calculated performances of these isomers, as expected, were similar, their physical properties were found to be extremely different. By altering the stereo- and regiochemistry, complete tunability in the form of low-or high-melting solids, standalone melt-castable explosives, melt-castable explosive eutectic compounds, and liquid propellant materials were obtained. This study demonstrates that theoretical calculations should not be the main factor in driving the design and synthesis of new materials, and that stereo- and regiochemistry offer a new dimension to consider when designing compounds of potential relevance to energetic formulators.


Energetic materials
Organic Synthesis

Supplementary materials

Energetics SI Final


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.