Tuning the Activities of Cu2O Nanostructures via the Oxide-Metal Interaction

05 June 2019, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Despite tremendous importance in catalysis, the design and improvement of the oxide- metal interface has been hampered by the limited understanding on the nature of interfacial sites, as well as the oxide-metal interaction (OMI). Through the construction of well-defined Cu2O-Pt, Cu2O-Ag, Cu2O-Au interfaces, we found that Cu2O Nanostructures (NSs) on Pt exhibit much lower thermal stability than on Ag and Au, although they show the same surface and edge structures, as identified by element-specific scanning tunneling microscopy (ES-STM) images. The activities of the Cu2O-Pt and Cu2O-Au interfaces for CO oxidation were further compared at the atomic scale and showed in general that the interface with Cu2O NSs could annihilate the CO-poisoning problem suffered by Pt group metals and enhance the interaction with O2, which is a limiting step for CO oxidation catalysis on group IB metals. While both interfaces could react with CO at room temperature, the OMI was found to determine the reactivity of supported Cu2O NSs by 1) tuning the activity of interfacial oxygen atoms and 2) stabilizing oxygen vacancies or vice versa, the dissociated oxygen atoms at the interface. Our study provides new insight for OMI and for the development of Cu-based catalysts for low temperature oxidation reactions.

Keywords

Cu2O
Oxide-metal interaction
CO oxidation
Element-specific STM
DFT

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.